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Takahashi gas 
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Abstract. The exact equation of state for the continuum gas of k components in one 
dimension has been derived with the help o f  the transfer matrix method. The gas is 
represented by rods having the sdme size and finite range of interaction not exceeding their 
size. The discussion of the properties of the system subject to constant pressure has been 
made in the case when the gas consists of two components A and B. 

1. Introduction 

The multicomponent interacting gas of particles can serve as a model for many physical 
applications. In particular, in two space dimensions the analysis of the equation of 
state in the Bragg approximation [l] for the binary alloy indicates the coexistence of 
the two separate phases of particles, say, of the sort A and E,  or one mixed phase 
depending on the interaction between the particies. How complex the phase portrait 
is can be determined, e.g. from the examination of adsorption phenomena [2] on a 
metal surface. In most biological applications it is important to keep the pressure 
constant. Then, depending on the sign of the interaction between the particles the 
change in pressure can influence the phase transition from the open structure to the 
closed one [Z, 31. This type of model nicely describes the anomalous water properties 
in iow imipera;uies, i.e. ihe giowth of the particle density (oi diminishing of iiie 
specific volume per particle) with increasing temperature. 

In the following we describe the equilibrium properties of the continuum k- 
component gas of rods in one space dimension. We should mention that the theory 
of the one-dimensional two-component gas has been considered by Kikucbi [4] and 
his method has been extended to the case of multicomponent mixtures by Longuet- 
.,,~g."" L J J .  , , " I I C " ~ I  ""I ,a)J)J'L"'XC" D b G B I . 1  I" UL >.."Y.C1. II. L l l b  III"UbI CY.,.. "I L U G  gm 

components is the short-range interacting Takahashi gas [ 6 ] .  We analyse its ground 
state properties and this should reveal the complexity which one can expect in higher 
dimensions. 

Tc1 U,....-..-- ,...- -----" ah C-P-D t,. ha o;--ln- 'In +La - -An1 nnrh - F A a  1"1 

-. 2. Fnrmulatinn . . .~~ nf the mode! 

The construction of the model consists of two steps. We start from the lattice gas 
approximation and then thecontinuum limit (lattice constant goes tozero) is performed 
on the lattice gas equation of state. Unless we specify the particular case of the two 
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sorts of particles our considerations will hold for the general r-component ( U =  

1, .  . . , k )  gas. The particles in the model are represented by rods having the same 
length s. We assume the two-particle short-range interaction for the gas. The range of 
each interaction does not exceed the distance s (the rod size). 

In the derivation of the continuum equation of state for the system of rods we 
follow the approach of Shulepov and Aksenenko [ 2 ] ,  which is based on the transfer 
matrix method, and we generalize it to the case of the interacting rods. 

Suppose that we have a linear lattice with L sites and we put on it N, rods of the 
sort U (U= 1 , .  . . , k ) .  If d is the number of the lattice sites covered by a rod and do 
is the rod length per one site (s = dd,) then each rod can be divided into d equally 
spaced segments. These segments we can label with numbers from I to d remembering 
that in one dimension the ordering is always possible. One should notice that, in a 
similar way, it is possible to label the empty lattice sites between the rods at the distance 
in the range of their mutual interaction. Thus each lattice site can appear in the 
following states: it can be covered by one of the d segments of a u-rod, it can be 
located in the range of the interaction between the rods or the site is far from the 
interaction range for the rods. In the model, the rods do not interact if the number of 
the sites between their closest ends is equal or greater than d. Hence, only the states 
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i -=(l",2",  . . . ,  2d") (2.1)  

where U = I , .  . . , k, are sufficient to calculate the partition function of the system of 
rods. The labels 1 , 2 , .  . . , 2 d  measure the number of the lattice sites starting from the 
left end of the u-particle. We add all contributions to the partition function with the 
help of the transfer matrix, M, defined as usually for the nearest-neighbour lattice site 
states (i:, j ; + , ) ,  where r = 1 , .  . . , L labels the lattice sites and their states are given by 
(2.1). All non-zero elements of the matrix M are defined as follows 

M"(i, i + l )  = 1 ( 2 . 2 a )  

M""(2d, 2 d )  = 1 (2 .26)  

M"'(i, 1 )  = z,w,,,(i+ 1 - d )  for d G i c 2 d  ( 2 2 )  

M""(2d, 1 )  = z, (2 .2d )  

where z,, is the chemical activity (z,, =ee",) for rod of the sort U, and 

w,,(i+ 1 - d )  =exp(PJJi+ 1 - d ) )  (2.3) 

is the Boltzmann weight factor for the interaction J,, between the rods separated by 
the distance of i+ 1 - d  lattice sites. In general, the interaction potential J,, depends 
on the separation distance between the particles. 

In the case of the periodic boundary conditions the partition function reads as 

QL = 1 - k +Tr M ' (2.4) 

where k is the number of the gas components and the term 1 - k is necessary to subtract 
the contribution to the sum over configurations when there are no particles. It appears 
that the eigenvectors of the matrix M have simple structure, which allows us to retrieve 
the equation of state for the system of rods although it is not possible to find its 
eigenvalues in the general case. The transfer matrix M satisfies the equation 

M V = h V  (2.5)  
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where V = [ V I ,  V 2 , .  . . , V*]' denotes the eigenvector belonging to the eigenvalue A, 
and V" with a = 1 , .  . . , k are the block-vectors consisting of d components. The matrix 
equation ( 2 . 5 )  can be written explicitly as the following set of equations 

V"( i +  1 )  = AV"(i) for l < i < d  (2.6a) 

z,w,,(i+ 1 - d )  V " ( l ) +  V"( i+  1 )  = A  V"( i )  f o r d s  i < 2d (2.66) 
v - ,  

z , V " ( l ) +  V " ( 2 d ) = A V m ( 2 d ) .  ( 2 . 6 ~ )  

With the help of the substitution method the equations (2 .6)  can be reduced to the 
matrix equation 

U = ,  

This equation has a non-trivial solution if V"(1)  # 0. Then the solution of (2.7) can 
be found with the help of the determinant equation 

det(m(h)-(A - l ) A 2 d - ' )  = O  (2.8) 

where the elements of the matrix m are defined as 
d 

l + ( A - 1 )  j=, 1 w,, ( j ) A " - * ] z  ... (2.9) 

We are interested in the continuum limit d -+CO ( d o + , )  but under the condition that 
the rod length r = d d , ,  the density of a-rods and the interaction ranges have the 
constant values during the limiting procedure. In this limit one can find the continuum 
equation of state 

(2.10) 

after the thermodynamic limit has been calculated, where P means the pressure per 
rod, p is the inverse temperature and A corresponds to the maximum eigenvalue of 
the transfer matrix M (in the thermodynamic limit QL-  In the continuum the 
natural unit of length for the model is the rod size s = 1 .  Therefore we introduce the 
following scaling procedure 

A ~ + A  (2 .1  1 a )  

z,d + 2,. (2.11b) 

Ihe first scaiing foiiows directiy From ( L . I U )  ana, together with the other one, is 
consistent with the well known thermodynamic relation 

pPs = lim d In A 
d - m  

- ,- . - ~  

(2.12) 

where the density pn  is the mean number of the a-rods per rod size. The scaling (2 .11  b )  
is necessary to have a finite chemicai potentiai in (i .8j  after the continuum iimit. in 
the continuous case the matrix (2.9) reads as 

w,,,(x)A'-" dx z,. (2.13) 1 
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One can find an analogous equation to (2 .8 )  for the k-component mixture in [ 5 ] .  In 
further considerations we make the simplifying assumption that the interaction J,,,(x) 
is constant in the range x < s of the interaction and zero beyond it. We also restrict 
ourselves to the case of the two-component gas consisting of rods, say A and E. Then 
the expression (2 .13)  reduces to the form 
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m"'(A) = [ 1 +  ( A  - ~ ) W , , ~ ] Z ~  

and the condition (2.8) leads to the following equation 

(2.14) 

A4(lnA)'-zAaA21nA-z,bA21n h + z A z , ( c 2 - u b ) = O  (2.15) 

after performing the scaling (2 .11)  and the limit d +a, where 

a = I + ( A  - l ) w A A  (2.160)  

b = 1 + ( A  - 1)wBB (2.166)  

e =  l + ( A - l ) W A B .  ( 2 . 1 6 ~ )  

With the help of (2.15) and the thermodynamic relation (2.12) for the density of rods 
A and B we can exclude the chemical potentials. To this end we differentiate (2 .15)  
with respect to zA and z, and we obtain two other equations 

2pAA41n A(2 In A+1)-zA{pAA2[a(2  InA+I)+a 'A In A]+aA21n A }  

-z,pAA2(b(2 In A + l ) +  b'h In A )  

+ zAzB{ (c2  - a b )  - p,A[ab'+ bn'-2cc']} = 0 ( 2 . 1 7 ~ )  

2p,A41nA(21nA+1)-z,{p,A2[b(21nA+l)+b'A InA]+bA21nA] 

-zAp,A2(n(2 In A +  l )+a 'A In A )  

+zAz,{ (c2-ab) -pBA[ab'+  ba' -2cc' ] )  (2 .176)  

for the unknown zA and zB,  where prime denotes the derivative with respect to A. After 
some tedious calculation the elimination of z,, and zB from the equations can be done 
and we obtain the following equation of state 

(2 .18)  

We want to stress that although we have assumed constant interaction the equation 
remains the same for the general short-range interaction potential. Let us note that in 
the limit p B + 0  one obtains the Takahashi equation of state for the one-component 
gas [ 6 ]  and the ideal gas equation of state once the interactions between the rods 
vanish. In general, the ideal k-component gas equation of state reads as 

(2.19) 

where U, are the rod sizes. 
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The right-hand side of (2.18) depends on the pressure, because A = e@''. However, 
one can easily examine the equation numerically, in particular the isobars. The ground 
state densities of the system subject to a constant pressure can be found exactly. 

3. Discussion of the results 

In the previous section we have derived the equation of state (2.18) for a short-range 
interacting two-component gas of rods having the same size. Analogously to that case 
one can express (2.8) in terms of the densities for the k-component mixture. We are 
interested in the case when the system of rods is subject to a constant pressure. It is 
known that this type of condition can lead to water-like properties for some models 
with repulsive interactions [3], where even in one space dimension one can expect a 
kind of phase transition governed by the pressure factor. Therefore we restrict our 
considerations to the discussion of isobars and ground state properties of (2.18). 

The most interesting behaviour of the gas of particles A and B occurs when all 
interactions JAA, JBB and JAB are repulsive (<O). Although the interactions are short- 
range the ground state portrait becomes very complicated. In figure I we divided the 
space of the interaction parameters J A ,  JB and JAB into eight typical regions according 
to the reaction of the gas to the applied pressure. Figures 2(a)-(e) show the ground 
state densities behaviour of the system of rods A and B in these regions. In each case 
increasing pressure makes structural changes in the gas, collapsing it finally into a 
uniformly dense structure. The numbers which label the isobars grow with increasing 
pressure. The solid lines correspond to the ground states, which are stable with respect 
to the value of the applied pressure, while the dashed lines describe the unstable states. 
However, the states which are unstable with respect to the pressures are stable against 
the temperature changes. It is evident from figure 3 where the plots of pa and pB are 
made for the unstable case. For completeness in figure 4 we show how the isobars 
share their phase space in non-zero temperature. It is evident from figures 2(a)-(e) 
that in the model with short-range repulsive interactions there are at most seven possible 
ground states. The number of states diminishes when the attractive interactions between 

4 JA-JAB 

3 

J B  -JAB 

Figure 1. Division o f  the interaction parameter space into eight characteristic regions a-h 
with respect to the response of the gas to the applied pressure. 
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P0 

PA 

PA PA 

Figure 2. Ground state densities for the gas subject 
to constant pressure in (a) region b (if the isobar 5 
and the upper branch of the isobar 6 vanish then 
also region a); ( b )  region c; ( e )  region d; ( d )  region 
e with the isobars 1, 2, 3, 4 and region f where the 
isobar 4' is substituted for 4; ( e )  region g with the 
isobars 1, 2, 3 and region h with the isobars I ,  2'. 3 .  



Transfer matrix for the Takahashi gas 4785 

PA 
Figure 3. Isobars in the unstable region c of figure 2 ( b )  for the temperatures r=Z.O, 1.0, 
0.2,0.01,0, where ~=k.T/lJ,l  and sPllJAl=l.O, J,,/IJ,I=-l, J2/iJAI=-0.5, J A B / l J A I =  
-0.5. 

PA 
Figure 4. Isobars corresponding to the pressure PIIJAI=0.2, 0.5, 0.7. 1.0, 3.0 for the 
temperature ~ = 0 . 1  and the interaction parameters defined as in figure 3. 

the rods are present. I n  particular, they reduce to the one ground state pa+pB= 1 if 
all interactions become attractive. One can easily imagine how complicated the 
behaviour of the system could be if the interaction between the rods had depended 
on the range of the interaction. For example, the one-dimensional short-range inter- 
action potential with the repulsive and attractive pan  can produce three ground states 
even for a one-component fluid [3,7]. 
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4. Conclusions 

We have presented the transfer matrix method for the continuum k-component gas of 
interacting rods. In the particular case of two sorts of gas particles, A and E, we have 
discussed their equation of state when the system is subject to constant pressure. In 
the model, each gas component is nothing but the Takahashi gas [6]. Our method is 
based on the approach of Shulepov and Aksenenko [2] who applied the transfer matrix 
language of the lattice gas to the continuum case. The matrix method is an alternative 
to the traditional approach with the help of the Laplace transform for the partition 
function [SI. The generalization of the method to further-range interacting gases is 
possible. In particular, the inclusion of the infinite range interactions between the rods 
(mean field approximation) results in the van der Waals type of the equation of state 
adjusted by the exact structure of the right-hand side of (2.18). 
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